Skip to main content

Azure AI Studio

LiteLLM supports all models on Azure AI Studio

Usage

ENV VAR

import os 
os.environ["AZURE_AI_API_KEY"] = ""
os.environ["AZURE_AI_API_BASE"] = ""

Example Call

from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai key"
os.environ["AZURE_AI_API_BASE"] = "azure ai base url" # e.g.: https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com/

# predibase llama-3 call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

Passing additional params - max_tokens, temperature

See all litellm.completion supported params here

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai api key"
os.environ["AZURE_AI_API_BASE"] = "azure ai api base"

# command r plus call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

proxy

  model_list:
- model_name: command-r-plus
litellm_params:
model: azure_ai/command-r-plus
api_key: os.environ/AZURE_AI_API_KEY
api_base: os.environ/AZURE_AI_API_BASE
max_tokens: 20
temperature: 0.5
  1. Start the proxy

    $ litellm --config /path/to/config.yaml
  2. Send Request to LiteLLM Proxy Server

    import openai
    client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
    )

    response = client.chat.completions.create(
    model="mistral",
    messages = [
    {
    "role": "user",
    "content": "what llm are you"
    }
    ],
    )

    print(response)

Function Calling

from litellm import completion

# set env
os.environ["AZURE_AI_API_KEY"] = "your-api-key"
os.environ["AZURE_AI_API_BASE"] = "your-api-base"

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="azure_ai/mistral-large-latest",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

Supported Models

LiteLLM supports ALL azure ai models. Here's a few examples:

Model NameFunction Call
Cohere command-r-pluscompletion(model="azure_ai/command-r-plus", messages)
Cohere command-rcompletion(model="azure_ai/command-r", messages)
mistral-large-latestcompletion(model="azure_ai/mistral-large-latest", messages)
AI21-Jamba-Instructcompletion(model="azure_ai/ai21-jamba-instruct", messages)

Rerank Endpoint

Usage

from litellm import rerank
import os

os.environ["AZURE_AI_API_KEY"] = "sk-.."
os.environ["AZURE_AI_API_BASE"] = "https://.."

query = "What is the capital of the United States?"
documents = [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country.",
]

response = rerank(
model="azure_ai/rerank-english-v3.0",
query=query,
documents=documents,
top_n=3,
)
print(response)